Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
J Immunol Res ; 2021: 5538348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997055

RESUMO

An effective therapeutic vaccine to eradicate HIV-1 infection does not exist yet. Among different vaccination strategies, cell-based vaccines could achieve in clinical trials. Cell viability and low nucleic acid expression are the problems related to dendritic cells (DCs) and mesenchymal stem cells (MSCs), which are transfected with plasmid DNA. Thus, novel in vitro strategies are needed to improve DNA transfection into these cells. The recent study assessed immune responses generated by MSCs and DCs, which were derived from mouse bone marrow and modified with Nef antigen using novel methods in mice. For this purpose, an excellent gene transfection approach by mechanical methods was used. Our data revealed that the transfection efficacy of Nef DNA into the immature MSCs and DCs was improved by the combination of chemical and mechanical (causing equiaxial cyclic stretch) approaches. Also, chemical transfection performed two times with 48-hour intervals further increased gene expression in both cells. The groups immunized with Nef DC prime/rNef protein boost and then Nef MSC prime/rNef protein boost were able to stimulate high levels of IFN-γ, IgG2b, IgG2a, and Granzyme B directed toward Th1 responses in mice. Furthermore, the mesenchymal or dendritic cell-based immunizations were more effective compared to protein immunization for enhancement of the Nef-specific T-cell responses in mice. Hence, the use of chemical reagent and mechanical loading simultaneously can be an excellent method in delivering cargoes into DCs and MSCs. Moreover, DC- and MSC-based immunizations can be considered as promising approaches for protection against HIV-1 infections.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Transfecção/métodos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Reatores Biológicos , Células Dendríticas/imunologia , Feminino , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Imunogenicidade da Vacina/genética , Masculino , Células-Tronco Mesenquimais/imunologia , Camundongos , Modelos Animais , Plasmídeos/genética , Cultura Primária de Células , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Transfecção/instrumentação , Produtos do Gene nef do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
2.
Biotechnol Lett ; 43(3): 547-559, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386500

RESUMO

OBJECTIVES: A potent HIV vaccine should overcome some limitations such as polymorphism of human HLA, the diversity of HIV-1 virus, and the lack of an effective delivery system. In this study, a DNA construct encoding Nef60-84, Nef126-144, Vpr34-47, Vpr60-75, Gp16030-53, Gp160308-323, and P248-151 epitopes was designed using bioinformatics tools. The pcDNA3.1-nef-vpr-gp160-p24 and pcDNA3.1-nef constructs were prepared in large scale as endotoxin-free form. Moreover, the recombinant Nef-Vpr-Gp160-p24 polypeptide and Nef protein were generated inE. coli. These constructs were delivered using cell penetrating peptides (CPPs) in vivo, and immune responses were assessed for different modalities in BALB/c mice. RESULTS: The recombinant DNA constructs were confirmed as the ~ 867 bp and ~ 648 bp bands related tonef-vpr-gp160-p24 andnef genes on agarose gel. Moreover, the purified Nef-Vpr-Gp160-p24 polypeptide and Nef protein showed the ~ 32 kDa and ~ 30 kDa bands on SDS-PAGE, respectively. The results of immune responses indicated that the heterologous prime/boost regimens using both Nef-Vpr-Gp160-P24 and Nef antigens induced significantly the secretion of IgG2a, IgG2b, IFN-γ and Granzyme B compared to other groups. The levels of Granzyme B in mice immunized with Nef antigen were higher than those immunized with Nef-Vpr-Gp160-P24 antigen. The CPPs showed the same potency with Montanide adjuvant for eliciting immune responses. CONCLUSIONS: The heterologous prime/boost regimens for both antigens could significantly direct immune responses toward Th1 and CTL activity compared to other regimens. Comparing the efficiency of Nef-Vpr-Gp160-P24 and Nef constructs, the Nef-Vpr-Gp160-P24 constructs delivered by CPPs showed promising results as an HIV vaccine candidate.


Assuntos
Vacinas contra a AIDS , Peptídeos Penetradores de Células , Sistemas de Liberação de Medicamentos/métodos , Epitopos , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Vacinas contra a AIDS/química , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos , Animais , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/imunologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Feminino , Anticorpos Anti-HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
3.
Viruses ; 14(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35062278

RESUMO

Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset specialized in type I interferon production, whose role in Human Immunodeficiency Virus (HIV) infection and pathogenesis is complex and not yet well defined. Considering the crucial role of the accessory protein Nef in HIV pathogenicity, possible alterations in intracellular signalling and extracellular vesicle (EV) release induced by exogenous Nef on uninfected pDCs have been investigated. As an experimental model system, a human plasmacytoid dendritic cell line, GEN2.2, stimulated with a myristoylated recombinant NefSF2 protein was employed. In GEN2.2 cells, Nef treatment induced the tyrosine phosphorylation of STAT-1 and STAT-2 and the production of a set of cytokines, chemokines and growth factors including IP-10, MIP-1ß, MCP-1, IL-8, TNF-α and G-CSF. The released factors differed both in type and amount from those released by macrophages treated with the same viral protein. Moreover, Nef treatment slightly reduces the production of small EVs, and the protein was found associated with the small (size < 200 nm) but not the medium/large vesicles (size > 200 nm) collected from GEN2.2 cells. These results add new information on the interactions between this virulence factor and uninfected pDCs, and may provide the basis for further studies on the interactions of Nef protein with primary pDCs.


Assuntos
Citocinas/metabolismo , Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , HIV-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Quimiocinas/metabolismo , Células Dendríticas/virologia , Infecções por HIV/virologia , Humanos , Macrófagos/metabolismo , Proteínas Recombinantes , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
4.
mBio ; 11(5)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109760

RESUMO

The proteasome is a major protein degradation machinery with essential and diverse biological functions. Upon induction by cytokines, proteasome subunits ß1, ß2, and ß5 are replaced by ß1i/LMP2, ß2i/MECL-1, and ß5i/LMP7, resulting in the formation of an immunoproteasome (iProteasome). iProteasome-degraded products are loaded onto the major histocompatibility complex class I (MHC-I), regulating immune responses and inducing cytotoxic T lymphocytes (CTLs). Human immunodeficiency virus type 1 (HIV-1) is the causal agent of AIDS. HIV-1-specific CTLs represent a critical immune mechanism limiting viral replication. HIV-1 negative regulatory factor (Nef) counteracts host immunity, particularly the response involving MHC-I/CTL. This study identifies a distinct mechanism by which Nef facilitates immune evasion via suppressing the function of iProteasome and MHC-I. Nef interacts with LMP7 on the endoplasmic reticulum (ER), downregulating the incorporation of LMP7 into iProteasome and thereby attenuating its formation. Moreover, Nef represses the iProteasome function of protein degradation, MHC-I trafficking, and antigen presentation.IMPORTANCE The ubiquitin-proteasome system (UPS) is essential for the degradation of damaged proteins, which takes place in the proteasome. Upon activation by cytokines, the catalytic subunits of the proteasome are replaced by distinct isoforms resulting in the formation of an immunoproteasome (iProteasome). iProteasome generates peptides used by major histocompatibility complex class I (MHC-I) for antigen presentation and is essential for immune responses. HIV-1 is the causative agent of AIDS, and HIV-1-specific cytotoxic T lymphocytes (CTLs) provide immune responses limiting viral replication. This study identifies a distinct mechanism by which HIV-1 promotes immune evasion. The viral protein negative regulatory factor (Nef) interacts with a component of iProteasome, LMP7, attenuating iProteasome formation and protein degradation function, and thus repressing the MHC-I antigen presentation activity of MHC-I. Therefore, HIV-1 targets LMP7 to inhibit iProteasome activation, and LMP7 may be used as the target for the development of anti-HIV-1/AIDS therapy.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Células HEK293 , Células HeLa , Humanos , Evasão da Resposta Imune
5.
Protein Pept Lett ; 27(11): 1151-1158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32364062

RESUMO

BACKGROUND: There is no effective and safe preventive/therapeutics vaccine against HIV-1 worldwide. Different viral proteins such as Nef, and two regions of Env including; variable loop of gp120 (V3) and membrane proximal external region of gp41 (MPER) are particularly important for vaccine development in different strategies and they are also the primary targets of cellular and humoral immune responses. On the other side, LDP12 is a new cell-penetrating peptide (CPP) which is capable of therapeutic application and cargoes delivery across the cellular membrane. OBJECTIVE: In current study, we designed and produced Nef-MPER-V3 fusion protein harboring LDP12 that has the capability of being used in future vaccine studies. METHODS: The CPP-protein was expressed in E. coli Rosseta (DE3) strain and purified through Ni-NTA column. Characterization of cellular delivery and toxicity of the recombinant protein were evaluated by western blotting and MTT assay. RESULTS: Our results showed that the CPP-protein was successfully expressed and purified with high yield of 5 mg/L. Furthermore, non-cytotoxic effect was observed and specific band (~ 37 KDa) in western blotting indicated the capability of LDP12 to improve the rate of penetration into HEK-293T cells in comparison with a control sample. CONCLUSION: Altogether, the data indicated that LDP12 CPP could be utilized to internalize HIV-1 Nef-MPER-V3 protein into eukaryotic cell lines without any toxicity and represented a valuable potential vaccine candidate and this guarantees the further evaluation towards the assessment of its immunogenicity in mice, which is currently under process.


Assuntos
Vacinas contra a AIDS , Peptídeos Penetradores de Células , Portadores de Fármacos , Proteína gp41 do Envelope de HIV , HIV-1 , Oligopeptídeos , Proteínas Recombinantes de Fusão , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/farmacocinética , Vacinas contra a AIDS/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/imunologia , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Células HEK293 , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/farmacocinética , Proteína gp41 do Envelope de HIV/farmacologia , HIV-1/química , HIV-1/imunologia , Humanos , Oligopeptídeos/química , Oligopeptídeos/imunologia , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/farmacocinética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/farmacologia
6.
J Biol Chem ; 295(20): 6983-6991, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32269076

RESUMO

Newly synthesized major histocompatibility complex (MHC) class I proteins are stabilized in the endoplasmic reticulum (ER) by binding 8-10-mer-long self-peptide antigens that are provided by transporter associated with antigen processing (TAP). These MHC class I:peptide complexes then exit the ER and reach the plasma membrane, serving to sustain the steady-state MHC class I expression on the cell surface. A novel subset of MHC class I molecules that preferentially bind lipid-containing ligands rather than conventional peptides was recently identified. The primate classical MHC class I allomorphs, Mamu-B*098 and Mamu-B*05104, are capable of binding the N-myristoylated 5-mer (C14-Gly-Gly-Ala-Ile-Ser) or 4-mer (C14-Gly-Gly-Ala-Ile) lipopeptides derived from the N-myristoylated SIV Nef protein, respectively, and of activating lipopeptide antigen-specific cytotoxic T lymphocytes. We herein demonstrate that Mamu-B*098 samples lysophosphatidylethanolamine and lysophosphatidylcholine containing up to a C20 fatty acid in the ER. The X-ray crystal structures of Mamu-B*098 and Mamu-B*05104 complexed with lysophospholipids at high resolution revealed that the B and D pockets in the antigen-binding grooves of these MHC class I molecules accommodate these lipids through a monoacylglycerol moiety. Consistent with the capacity to bind cellular lipid ligands, these two MHC class I molecules did not require TAP function for cell-surface expression. Collectively, these results indicate that peptide- and lipopeptide-presenting MHC class I subsets use distinct sources of endogenous ligands.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Lisofosfolipídeos/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/imunologia , Lipoilação/imunologia , Lisofosfolipídeos/imunologia , Macaca mulatta , Peptídeos/química , Peptídeos/imunologia , Estrutura Quaternária de Proteína , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
7.
Front Immunol ; 11: 153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117291

RESUMO

Pregnancy induces alterations in peripheral T-cell populations with both changes in subset frequencies and anti-viral responses found to alter with gestation. In HIV-1 positive women anti-HIV-1 responses are associated with transmission risk, however detailed investigation into both HIV-1-specific memory responses associated with HIV-1 control and T-cell subset changes during pregnancy have not been undertaken. In this study we aimed to define pregnancy and gestation related changes to HIV-1-specific responses and T-cell phenotype in ART treated HIV-1 positive pregnant women. Eleven non-pregnant and 24 pregnant HIV-1 positive women were recruited, peripheral blood samples taken, fresh cells isolated, and compared using ELISpot assays and flow cytometry analysis. Clinical data were collected as part of standard care, and non-parametric statistics used. Alterations in induced IFNγ, IL-2, IL-10, and granzyme B secretion by peripheral blood mononuclear cells in response to HIV-1 Gag and Nef peptide pools and changes in T-cell subsets between pregnant and non-pregnant women were assessed, with data correlated with participant clinical parameters and longitudinal analysis performed. Cross-sectional comparison identified decreased IL-10 Nef response in HIV-1 positive pregnant women compared to non-pregnant, while correlations exhibited reversed Gag and Nef cytokine and protease response associations between groups. Longitudinal analysis of pregnant participants demonstrated transient increases in Gag granzyme B response and in the central memory CD4 T-cell subset frequency during their second trimester, with a decrease in CD4 effector memory T cells from their second to third trimester. Gag and Nef HIV-1-specific responses diverge with pregnancy time-point, coinciding with relevant T-cell phenotype, and gestation associated immunological adaptations. Decreased IL-10 Nef and both increased granzyme B Gag response and central memory CD4 T cells implies that amplified antigen production is occurring, which suggests a period of compromised HIV-1 control in pregnancy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Idade Gestacional , Granzimas/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Memória Imunológica , Adulto , Fármacos Anti-HIV/uso terapêutico , Contagem de Linfócito CD4 , Células Cultivadas , Estudos Transversais , Feminino , Antígenos HIV/imunologia , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Estudos Longitudinais , Gravidez , RNA Viral/sangue , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
8.
PLoS One ; 14(10): e0223844, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31671105

RESUMO

To develop an effective therapeutic vaccine against HIV-1, prediction of the most conserved epitopes derived from major proteins using bioinformatics tools is an alternative achievement. The epitope-driven vaccines against variable pathogens represented successful results. Hence, to overcome this hyper-variable virus, we designed the highly conserved and immunodominant peptide epitopes. Two servers were used to predict peptide-MHC-I binding affinity including NetMHCpan4.0 and Syfpeithi servers. The NetMHCIIpan3.2 server was utilized for MHC-II binding affinity. Then, we determined immunogenicity scores and allergenicity by the IEDB immunogenicity predictor and Algpred, respectively. Next, for estimation of toxicity and population coverage, ToxinPred server and IEDB population coverage tool were applied. After that, the MHC-peptide binding was investigated by GalexyPepDock peptide-protein flexible docking server. Finally, two different DNA and peptide constructs containing Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 were prepared and complexed with four various cell penetrating peptides (CPPs) for delivery into mammalian cells (MPG and HR9 CPPs for DNA delivery, and CyLoP-1 and LDP-NLS CPPs for protein delivery). Our results indicated that the designed DNA and peptide constructs could form non-covalent stable nanoparticles at certain ratios as observed by scanning electron microscope (SEM) and Zetasizer. The flow cytometry results obtained from in vitro transfection of the nanoparticles into HEK-293T cell lines showed that the percentage of GFP expressing cells was about 38.38 ± 1.34%, 25.36% ± 0.30, 54.95% ± 0.84, and 25.11% ± 0.36 for MPG/pEGFP-nef-vif-gp160-p24, MPG/pEGFP-nef-vpu-gp160-p24, HR9/pEGFP-nef-vif-gp160-p24 and HR9/pEGFP-nef-vpu-gp160-p24, respectively. Thus, these data showed that the DNA construct harboring nef-vif-gp160-p24 multi-epitope gene had higher efficiency than the DNA construct harboring nef-vpu-gp160-p24 multi-epitope gene to penetrate into the cells. Moreover, delivery of the recombinant Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 polyepitope peptides in HEK-293T cells was confirmed as a single band about 32 kDa using western blot analysis. Although, both DNA and peptide constructs could be successfully transported by a variety of CPPs into the cells, but the difference between them in transfection rate will influence the levels of immune responses for development of therapeutic vaccines.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Epitopos de Linfócito T/metabolismo , HIV-1/imunologia , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Células HEK293 , Proteína do Núcleo p24 do HIV/imunologia , Proteína gp160 do Envelope de HIV/imunologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
9.
Front Immunol ; 10: 2151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572371

RESUMO

Current combined antiretroviral therapy (cART) mainly targets 3 of the 15 HIV proteins leaving many potential viral vulnerabilities unexploited. To purge the HIV-1 latent reservoir, various strategies including "shock and kill" have been developed. A key question is how to restore impaired immune surveillance. HIV-1 protein Nef has long been known to mediate the downregulation of cell-surface MHC-I and assist HIV-1 to evade the immune system. Through high throughput screening of Food and Drug Administration (FDA) approved drugs, we identified lovastatin, a statin drug, to significantly antagonize Nef to downregulate MHC-I, CD4, and SERINC5, and inhibit the intrinsic infectivity of virions. In addition, lovastatin boosted autologous CTLs to eradicate the infected cells and effectively inhibit the subsequent viral rebound in CD4+ T-lymphocytes isolated from HIV-1-infected individuals receiving suppressive cART. Furthermore, we found that lovastatin inhibits Nef-induced MHC-I downregulation by directly binding with Nef and disrupting the Nef-AP-1 complex. These results demonstrate that lovastatin is a promising agent for counteracting Nef-mediated downregulation of MHC-I, CD4, and SERINC5. Lovastatin could potentially be used in the clinic to enhance anti-HIV-1 immune surveillance.


Assuntos
Infecções por HIV/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Lovastatina/farmacologia , Antígenos CD4/imunologia , Células Cultivadas , Técnicas de Cocultura , Regulação para Baixo , HIV-1 , Humanos , Proteínas de Membrana/imunologia , Linfócitos T/imunologia , Fator de Transcrição AP-1/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
10.
PLoS One ; 14(2): e0211714, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735507

RESUMO

We generalize the notion of λ-superstrings, presented in a previous paper, to the notion of weighted λ-superstrings. This generalization entails an important improvement in the applications to vaccine designs, as it allows epitopes to be weighted by their immunogenicities. Motivated by these potential applications of constructing short weighted λ-superstrings to vaccine design, we approach this problem in two ways. First, we formalize the problem as a combinatorial optimization problem (in fact, as two polynomially equivalent problems) and develop an integer programming (IP) formulation for solving it optimally. Second, we describe a model that also takes into account good pairwise alignments of the obtained superstring with the input strings, and present a genetic algorithm that solves the problem approximately. We apply both algorithms to a set of 169 strings corresponding to the Nef protein taken from patiens infected with HIV-1. In the IP-based algorithm, we take the epitopes and the estimation of the immunogenicities from databases of experimental epitopes. In the genetic algorithm we take as candidate epitopes all 9-mers present in the 169 strings and estimate their immunogenicities using a public bioinformatics tool. Finally, we used several bioinformatic tools to evaluate the properties of the candidates generated by our method, which indicated that we can score high immunogenic λ-superstrings that at the same time present similar conformations to the Nef virus proteins.


Assuntos
Cadeias lambda de Imunoglobulina/imunologia , Vacinas/síntese química , Vacinas contra a AIDS/síntese química , Vacinas contra a AIDS/imunologia , Algoritmos , Epitopos/genética , Epitopos/imunologia , HIV-1/genética , HIV-1/imunologia , Humanos , Cadeias lambda de Imunoglobulina/genética , Modelos Teóricos , Alinhamento de Sequência , Vacinas/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
11.
Cell Host Microbe ; 25(1): 73-86.e5, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30629922

RESUMO

HIV-1 primarily infects T lymphocytes and uses these motile cells as migratory vehicles for effective dissemination in the host. Paradoxically, the virus at the same time disrupts multiple cellular processes underlying lymphocyte motility, seemingly counterproductive to rapid systemic infection. Here we show by intravital microscopy in humanized mice that perturbation of the actin cytoskeleton via the lentiviral protein Nef, and not changes to chemokine receptor expression or function, is the dominant cause of dysregulated infected T cell motility in lymphoid tissue by preventing stable cellular polarization required for fast migration. Accordingly, disrupting the Nef hydrophobic patch that facilitates actin cytoskeletal perturbation initially accelerates systemic viral dissemination after female genital transmission. However, the same feature of Nef was subsequently critical for viral persistence in immune-competent hosts. Therefore, a highly conserved activity of lentiviral Nef proteins has dual effects and imposes both fitness costs and benefits on the virus at different stages of infection.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular , Infecções por HIV/transmissão , HIV-1/fisiologia , HIV-1/patogenicidade , Mucosa/metabolismo , Actinas/metabolismo , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Linfócitos/virologia , Camundongos , Mucosa/virologia , Linfócitos T/imunologia , Linfócitos T/virologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Viremia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Quinases Ativadas por p21/metabolismo
12.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602611

RESUMO

The HIV accessory protein Nef modulates key immune evasion and pathogenic functions, and its encoding gene region exhibits high sequence diversity. Given the recent identification of early HIV-specific adaptive immune responses as novel correlates of HIV reservoir size, we hypothesized that viral factors that facilitate the evasion of such responses-namely, Nef genetic and functional diversity-might also influence reservoir establishment and/or persistence. We isolated baseline plasma HIV RNA-derived nef clones from 30 acute/early-infected individuals who participated in a clinical trial of early combination antiretroviral therapy (cART) (<6 months following infection) and assessed each Nef clone's ability to downregulate CD4 and human leukocyte antigen (HLA) class I in vitro We then explored the relationships between baseline clinical, immunological, and virological characteristics and the HIV reservoir size measured 48 weeks following initiation of suppressive cART (where the reservoir size was quantified in terms of the proviral DNA loads as well as the levels of replication-competent HIV in CD4+ T cells). Maximal within-host Nef-mediated downregulation of HLA, but not CD4, correlated positively with post-cART proviral DNA levels (Spearman's R = 0.61, P = 0.0004) and replication-competent reservoir sizes (Spearman's R = 0.36, P = 0.056) in univariable analyses. Furthermore, the Nef-mediated HLA downregulation function was retained in final multivariable models adjusting for established clinical and immunological correlates of reservoir size. Finally, HIV subtype B-infected persons (n = 25) harbored significantly larger viral reservoirs than non-subtype B-infected persons (2 infected with subtype CRF01_AE and 3 infected with subtype G). Our results highlight a potentially important role of viral factors-in particular, HIV subtype and accessory protein function-in modulating viral reservoir establishment and persistence.IMPORTANCE While combination antiretroviral therapies (cART) have transformed HIV infection into a chronic manageable condition, they do not act upon the latent HIV reservoir and are therefore not curative. As HIV cure or remission should be more readily achievable in individuals with smaller HIV reservoirs, achieving a deeper understanding of the clinical, immunological, and virological determinants of reservoir size is critical to eradication efforts. We performed a post hoc analysis of 30 participants of a clinical trial of early cART who had previously been assessed in detail for their clinical, immunological, and reservoir size characteristics. We observed that the HIV subtype and autologous Nef-mediated HLA downregulation function correlated with the viral reservoir size measured approximately 1 year post-cART initiation. Our findings highlight virological characteristics-both genetic and functional-as possible novel determinants of HIV reservoir establishment and persistence.


Assuntos
Infecções por HIV/imunologia , HIV/imunologia , Evasão da Resposta Imune/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Adulto , Antirretrovirais/farmacologia , Antígenos CD4/imunologia , Linfócitos T CD4-Positivos/imunologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , HIV/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Antígenos HLA/imunologia , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia , Adulto Jovem
13.
Front Immunol ; 9: 2443, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405632

RESUMO

Since anti-HIV treatment cannot cure the infection, many strategies have been proposed to eradicate the viral reservoir, which still remains as a major challenge. The success of some of these strategies will rely on the ability of HIV-specific CD8+ T-cells (CD8TC) to clear reactivated infected cells. Here, we aimed to investigate the phenotype and function of in vitro expanded CD8TC obtained from HIV+ subjects on combination antiretroviral therapy (cART), either initiated earlier (median = 3 months postinfection, ET: Early treatment) or later (median = 20 months postinfection, DT: Delayed treatment) after infection. Peripheral blood mononuclear cells from 12 DT and 13 ET subjects were obtained and stimulated with Nef and Gag peptide pools plus IL-2 for 14 days. ELISPOT was performed pre- and post-expansion. CD8TC memory/effector phenotype, PD-1 expression, polyfunctionality (CD107a/b, IFN-γ, IL-2, CCL4 (MIP-1ß), and/or TNF-α production) and antiviral activity were evaluated post-expansion. Magnitude of ELISPOT responses increased after expansion by 103 times, in both groups. Expanded cells were highly polyfunctional, regardless of time of cART initiation. The memory/effector phenotype distribution was sharply skewed toward an effector phenotype after expansion in both groups although ET subjects showed significantly higher proportions of stem-cell and central memory CD8TCs. PD-1 expression was clustered in HIV-specific effector memory CD8TCs, subset that also showed the highest proportion of cytokine-producing cells. Moreover, PD-1 expression directly correlated with CD8TC functionality. Expanded CD8TCs from DT and ET subjects were highly capable of mediating antiviral activity, measured by two different assays. Antiviral function directly correlated with the proportion of fully differentiated effector cells (viral inhibition assay) as well as with CD8TC polyfunctionality and PD-1 expression (VITAL assay). In sum, we show that, despite being dampened in subjects on cART, the HIV-specific CD8TC response could be selectively stimulated and expanded in vitro, presenting a high proportion of cells able to carry-out multiple effector functions. Timing of cART initiation had an impact on the memory/effector differentiation phenotype, most likely reflecting how different periods of antigen persistence affected immune function. Overall, these results have important implications for the design and evaluation of strategies aimed at modulating CD8TCs to achieve the HIV functional cure.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Doença Aguda , Antirretrovirais/uso terapêutico , Proliferação de Células , Células Cultivadas , Citotoxicidade Imunológica , Infecções por HIV/tratamento farmacológico , Humanos , Memória Imunológica , Imunofenotipagem , Ativação Linfocitária , Fragmentos de Peptídeos/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
14.
J Immunol ; 201(9): 2624-2640, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30282749

RESUMO

Endosomal traffic of TCR and signaling molecules regulates immunological synapse formation and T cell activation. We recently showed that Rab11 endosomes regulate the subcellular localization of the tyrosine kinase Lck and of the GTPase Rac1 and control their functions in TCR signaling and actin cytoskeleton remodeling. HIV-1 infection of T cells alters their endosomal traffic, activation capacity, and actin cytoskeleton organization. The viral protein Nef is pivotal for these modifications. We hypothesized that HIV-1 Nef could jointly alter Lck and Rac1 endosomal traffic and concomitantly modulate their functions. In this study, we show that HIV-1 infection of human T cells sequesters both Lck and Rac1 in a pericentrosomal compartment in an Nef-dependent manner. Strikingly, the Nef-induced Lck compartment contains signaling-competent forms (phosphorylated on key Tyr residues) of Lck and some of its downstream effectors, TCRζ, ZAP70, SLP76, and Vav1, avoiding the proximal LAT adaptor. Importantly, Nef-induced concentration of signaling molecules was concomitant with the upregulation of several early and late T cell activation genes. Moreover, preventing the concentration of the Nef-induced Lck compartment by depleting the Rab11 effector FIP3 counteracted Nef-induced gene expression upregulation. In addition, Nef extensively sequesters Rac1 and downregulates Rac1-dependent actin cytoskeleton remodeling, thus reducing T cell spreading. Therefore, by modifying their endosomal traffic, Nef hijacks signaling and actin cytoskeleton regulators to dually modulate their functional outputs. Our data shed new light into the molecular mechanisms that modify T cell physiology during HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/imunologia , Citoesqueleto de Actina/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Endossomos/virologia , Infecções por HIV/metabolismo , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Transporte Proteico/imunologia , Transdução de Sinais/imunologia , Proteínas rac1 de Ligação ao GTP/imunologia
15.
Front Immunol ; 9: 2068, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254642

RESUMO

The role of HIV-specific CD8 T cell activity in the course of HIV infection and the way it affects the virus that resides in the latent reservoir resting memory cells is debated. The PBMC of HIV-infected patients contain HIV-specific CD8 T cells and their potential targets, CD4 T cells latently infected by HIV. CD4 T cells and CD8 T cells procured from PBMC of HIV-infected patients were co-incubated and analyzed: Formation of CD8 T cells and HIV-infected CD4 T cell conjugates and apoptosis of these CD4 T cells were observed by fluorescence microscopy with in situ PCR of HIV LTR DNA. Furthermore, conjugation of CD8 T cells with CD4 T cells and apoptosis of CD4 T cells was observed and quantified by imaging flow cytometry using anti-human activated caspase 3 antibody and TUNEL assay. The conjugation activity and apoptosis were found to be much higher in patients with acute HIV infection or AIDS compared to patients in chronic infection on antiretroviral therapy (ART) or not. Patients on ART had low grade conjugation and apoptosis of isolated CD69, CD25, and HLA-DR-negative CD4 T cells (latent reservoir cells) by CD8 T cells. Using in situ PCR The latent reservoir CD4 T cells were shown to contain most of the HIV DNA. We demonstrate in HIV-infected patients, that CD8 T cells conjugate with and kill HIV-infected CD4 T cells, including HIV-infected resting memory CD4 T cells, throughout the course of HIV infection. We propose that in HIV-infected patients CD4 T cell annihilation is caused in part by ongoing activity of HIV-specific CD8 T cells. HIV Nef protein interacts with ASK 1 and inhibits its pro-apoptotic death signaling by Fas/FasL, thus protecting HIV-infected cells from CD8 T cells killing. A peptide that interrupts Nef-ASK1 interaction that had been delivered into CD4 T cells procured from patients on ART resulted in the increase of their apoptosis inflicted by autologous CD8 T cells. We suggest that elimination of the HIV-infected latent reservoir CD4 T cells can be achieved by Nef inhibition.


Assuntos
Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunidade Celular , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Adulto , Apoptose/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , DNA Viral/imunologia , Proteína Ligante Fas/imunologia , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Humanos , Memória Imunológica/efeitos dos fármacos , MAP Quinase Quinase Quinase 5/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/farmacologia , Receptor fas/imunologia
16.
Viral Immunol ; 31(7): 525-536, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30059271

RESUMO

Epitope escape from HIV-1-targeted CD8+ cytotoxic T lymphocyte (CTL) responses occurs rapidly after acute infection and contributes to the eventual failure of effective immune control of HIV-1 infection. Because the early CTL response is key in determining HIV-1 disease outcome, studying the process of epitope escape is crucial for understanding what leads to failure of immune control in acute HIV-1 infection and will provide important implications for HIV-1 vaccine design. HIV-1-specific CD8+ T lymphocyte responses against viral epitopes were mapped in six acutely infected individuals, and the magnitudes of these responses were measured longitudinally during acute infection. The evolution of autologous circulating viral epitopes was determined in four of these subjects. In-depth testing of CD8+ T lymphocyte responses against index and all autologous-detected variant epitopes was performed in one subject. Among the four individuals examined, 10 of a total of 35 CD8+ T cell responses within Gag, Pol, and Nef showed evidence of epitope escape. CTL responses with viral epitope variant evolution were shown in one subject, and this evolution occurred with and without measurable CTL responses against epitope variants. These results demonstrate a dynamic period of viral epitope evolution in early HIV-1 infection due to CD8+ CTL response pressure.


Assuntos
Epitopos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Linfócitos T Citotóxicos/imunologia , Doença Aguda , Mapeamento de Epitopos , Epitopos/sangue , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Produtos do Gene pol/genética , Produtos do Gene pol/imunologia , Infecções por HIV/sangue , HIV-1/genética , Humanos , Estudos Longitudinais , Plasma/virologia , Cultura Primária de Células , RNA Viral/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
17.
Nat Commun ; 9(1): 1371, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636452

RESUMO

HIV-1 causes chronic inflammation and AIDS in humans, whereas related simian immunodeficiency viruses (SIVs) replicate efficiently in their natural hosts without causing disease. It is currently unknown to what extent virus-specific properties are responsible for these different clinical outcomes. Here, we incorporate two putative HIV-1 virulence determinants, i.e., a Vpu protein that antagonizes tetherin and blocks NF-κB activation and a Nef protein that fails to suppress T cell activation via downmodulation of CD3, into a non-pathogenic SIVagm strain and test their impact on viral replication and pathogenicity in African green monkeys. Despite sustained high-level viremia over more than 4 years, moderately increased immune activation and transcriptional signatures of inflammation, the HIV-1-like SIVagm does not cause immunodeficiency or any other disease. These data indicate that species-specific host factors rather than intrinsic viral virulence factors determine the pathogenicity of primate lentiviruses.


Assuntos
HIV-1/patogenicidade , Especificidade de Hospedeiro , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Lentivirus de Primatas/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas Virais Reguladoras e Acessórias/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Animais , Antígeno 2 do Estroma da Médula Óssea/genética , Antígeno 2 do Estroma da Médula Óssea/imunologia , Complexo CD3/genética , Complexo CD3/imunologia , Chlorocebus aethiops , Feminino , Regulação da Expressão Gênica , HIV-1/crescimento & desenvolvimento , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Lentivirus de Primatas/patogenicidade , Ativação Linfocitária , NF-kappa B/genética , NF-kappa B/imunologia , Alinhamento de Sequência , Transdução de Sinais , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Transcrição Gênica , Carga Viral , Proteínas Virais Reguladoras e Acessórias/genética , Virulência , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
18.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237831

RESUMO

Nef-specific CD8+ T lymphocytes (CD8TL) are linked to extraordinary control of primate lentiviral replication, but the mechanisms underlying their efficacy remain largely unknown. The immunodominant, Mamu-B*017:01+-restricted Nef195-203MW9 epitope in SIVmac239 partially overlaps a sorting motif important for interactions with host AP-2 proteins and, hence, downmodulation of several host proteins, including Tetherin (CD317/BST-2), CD28, CD4, SERINC3, and SERINC5. We reasoned that CD8TL-driven evolution in this epitope might compromise Nef's ability to modulate these important molecules. Here, we used deep sequencing of SIV from nine B*017:01+ macaques throughout infection with SIVmac239 to characterize the patterns of viral escape in this epitope and then assayed the impacts of these variants on Nef-mediated modulation of multiple host molecules. Acute variation in multiple Nef195-203MW9 residues significantly compromised Nef's ability to downregulate surface Tetherin, CD4, and CD28 and reduced its ability to prevent SERINC5-mediated reduction in viral infectivity but did not impact downregulation of CD3 or major histocompatibility complex class I, suggesting the selective disruption of immunomodulatory pathways involving Nef AP-2 interactions. Together, our data illuminate a pattern of viral escape dictated by a selective balance to maintain AP-2-mediated downregulation while evading epitope-specific CD8TL responses. These data could shed light on mechanisms of both CD8TL-driven viral control generally and on Mamu-B*017:01-mediated viral control specifically.IMPORTANCE A rare subset of humans infected with HIV-1 and macaques infected with SIV can control the virus without aid of antiviral medications. A common feature of these individuals is the ability to mount unusually effective CD8 T lymphocyte responses against the virus. One of the most formidable aspects of HIV is its ability to evolve to evade immune responses, particularly CD8 T lymphocytes. We show that macaques that target a specific peptide in the SIV Nef protein are capable of better control of the virus and that, as the virus evolves to escape this response, it does so at a cost to specific functions performed by the Nef protein. Our results help show how the virus can be controlled by an immune response, which could help in designing effective vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Epitopos de Linfócito T/imunologia , Evasão da Resposta Imune/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia , Animais , Evolução Biológica , Antígeno 2 do Estroma da Médula Óssea/imunologia , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Macaca/virologia , Glicoproteínas de Membrana , Proteínas de Membrana , Mutação , Proteínas de Neoplasias , RNA Viral , Receptores de Superfície Celular , Análise de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Proteínas do Envelope Viral/imunologia , Proteínas Virais Reguladoras e Acessórias/genética , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
19.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046444

RESUMO

Patient-derived HIV-1 subtype B Nef clones downregulate HLA-A more efficiently than HLA-B. However, it remains unknown whether this property is common to Nef proteins across primate lentiviruses and how antiviral immune responses may be affected. We examined 263 Nef clones from diverse primate lentiviruses including different pandemic HIV-1 group M subtypes for their ability to downregulate major histocompatibility complex class A (MHC-A) and MHC-B from the cell surface. Though lentiviral Nef proteins differed markedly in their absolute MHC-A and MHC-B downregulation abilities, all lentiviral Nef lineages downregulated MHC-A, on average, 11 to 32% more efficiently than MHC-B. Nef genotype/phenotype analyses in a cohort of HIV-1 subtype C-infected patients (n = 168), together with site-directed mutagenesis, revealed Nef position 9 as a subtype-specific determinant of differential HLA-A versus HLA-B downregulation activity. Nef clones harboring nonconsensus variants at codon 9 downregulated HLA-B (though not HLA-A) significantly better than those harboring the consensus sequence at this site, resulting in reduced recognition of infected target cells by HIV-1-specific CD8+ effector cells in vitro Among persons expressing protective HLA class I alleles, carriage of Nef codon 9 variants was also associated with reduced ex vivo HIV-specific T cell responses. Our results demonstrate that Nef's inferior ability to downregulate MHC-B compared to that of MHC-A is conserved across primate lentiviruses and suggest that this property influences antiviral cellular immune responses.IMPORTANCE Primate lentiviruses encode the Nef protein that plays an essential role in establishing persistent infection in their respective host species. Nef interacts with the cytoplasmic region of MHC-A and MHC-B molecules and downregulates them from the infected cell surface to escape recognition by host cellular immunity. Using a panel of Nef alleles isolated from diverse primate lentiviruses including pandemic HIV-1 group M subtypes, we demonstrate that Nef proteins across all lentiviral lineages downregulate MHC-A approximately 20% more effectively than MHC-B. We further identify a naturally polymorphic site at Nef position 9 that contributes to the MHC-B downregulation function in HIV-1 subtype C and show that carriage of Nef variants with enhanced MHC-B downregulation ability is associated with reduced breadth and magnitude of MHC-B-restricted cellular immune responses in HIV-infected individuals. Our study underscores an evolutionarily conserved interaction between lentiviruses and primate immune systems that may contribute to pathogenesis.


Assuntos
Infecções por HIV/imunologia , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Lentivirus de Primatas/genética , Linfócitos T/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Alelos , Códon , Regulação para Baixo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/imunologia , Antígenos HLA-A/imunologia , Antígenos HLA-B/imunologia , Humanos , Evasão da Resposta Imune , Imunidade Celular , Mutagênese Sítio-Dirigida , Fenótipo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/classificação , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
20.
Curr HIV Res ; 16(5): 322-337, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30605062

RESUMO

BACKGROUND: Acquired immune deficiency syndrome (HIV/AIDS) has been a major global health concern for over 38 years. No safe and effective preventive or therapeutic vaccine has been developed although many products have been investigated. Computational methods have facilitated vaccine developments in recent decades. Among HIV-1 proteins, p24 and Nef are two suitable targets to provoke the cellular immune response. However, the fusion form of these two proteins has not been analyzed in silico yet. OBJECTIVE: This study aimed at the evaluation of possible fusion forms of p24 and Nef in order to achieve a potential therapeutic subunit vaccine against HIV-1. METHOD: In this study, various computational approaches have been applied to predict the most effective fusion form of p24-Nef including CTL (Cytotoxic T lymphocytes) response, immunogenicity, conservation and population coverage. Moreover, binding to MHC (Major histocompatibility complex) molecules was assessed in both human and BALB/c. RESULTS: After analyzing six possible fusion protein forms using AAY linker, we came up with the most practical form of p24 from 80 to 231 and Nef from 120 to 150 regions (according to their reference sequence of HXB2 strain) using an AAY linker, based on their peptides affinity to MHC molecules which are located in a conserved region among different virus clades. The selected fusion protein contains seventeen MHC I antigenic epitopes, among them KRWIILGLN, YKRWIILGL, DIAGTTSTL and FPDWQNYTP are fully conserved between the virus clades. Furthermore, analyzed class I CTL epitopes showed greater affinity binding to HLA-B 57*01, HLA-B*51:01 and HLA-B 27*02 molecules. The population coverage with the rate of >70% coverage in the Persian population supports this truncated form as an appropriate candidate against HIV-I virus. CONCLUSION: The predicted fusion protein, p24-AAY-Nef in a truncated form with a high rate of T cell epitopes and high conservancy rate among different clades, provides a helpful model for developing a therapeutic vaccine candidate against HIV-1.


Assuntos
Vacinas contra a AIDS/imunologia , Síndrome de Imunodeficiência Adquirida/terapia , Epitopos de Linfócito T/imunologia , Proteína do Núcleo p24 do HIV/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T Citotóxicos/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Animais , Biologia Computacional , Descoberta de Drogas , Epitopos de Linfócito T/genética , Proteína do Núcleo p24 do HIV/genética , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...